

Aprovechamiento de la Cascarilla del Café Pergamino (*Coffea arabica* var. San Isidro) para su Aplicación en Panificación y Bebidas

Melissa Alfaro Solórzano Andrea Chaves Buzano Tutora: Priscilla Alvarado Marenco Ingeniería en Tecnología de Alimentos.

CONTEXTO

- ➤ La producción de café genera residuos significativos. el 5 % de la biomasa se emplea en la bebida, mientras que el 95 % restante incluida la cascarilla del café pergamino representa un desafío ambiental.
- La cascarilla del café pergamino representa hasta un 20 % del peso del grano y posee alto contenido de fibra, proteínas y compuestos bioactivos que se pueden utilizar en la industria alimentaria como materias primas en panificación y bebidas reduciendo así el impacto ambiental y promoviendo la economía circular.
- Por lo que se pretende evaluar la viabilidad técnica y comercial de la cascarilla del café pergamino como ingrediente en productos de panificación y bebidas funcionales.

METODOLOGÍA

- Se realizó un estudio experimental de enfoque mixto utilizando cascarilla de café pergamino de Turrubares, procesada mediante tostado, molienda y tamizado.
- Se caracterizó la cascarilla mediante pruebas físico-químicas y microbiológicas.
- Se desarrollaron los siguientes productos alimenticios: un pan de molde con fibra y una bebida tipo horchata, los que se caracterizaron fisicoquímicamente y desde el punto de vista nutricional.
- Se valoraron los atributos sensoriales de los productos obtenidos.
- ➤ Se hizo el costeo de los desarrollos y compararon con el mercado para estudiar la viabilidad comercial.

Información de Contacto

Correo electrónico: <u>andreachavesb@gmail.com</u> <u>alfaromelissa20@gmail.com</u>

Desarrollo de productos alimenticios con cascarilla de café pergamino

Producto piloto	Ensayos	Variables	Criterios de aprobación	Validación externa
Pan de molde "con fibra"	4 formulas	0 – X % de cascarilla (ajuste de sabor, olor, color, textura)	 Sabor sin notas amargas Color y aroma semejantes a un pan integral comercial Miga húmeda, textura firme 	Grupo focal (10 consumidores) – UTN Atenas, 25-oct-2024
Bebida tipo "horchata" con fibra	4 formulas	Sustitución parcial de harina de arroz por cascarilla + ajuste de especias	 Sabor equilibrado, especias evidentes Color canela uniforme Textura suave, sin arenosidad 	Grupo focal (10 consumidores) – mismo protocolo

Resultado de la prueba 3 con menos cantidad de cascarilla del café pergamino y con más levadura para la elaboración del pan molde.

Resultado de la prueba 4 con la cantidad de cascarilla del café pergamino para ser fuente de fibra, en la elaboración de la bebida de horchata.

PASOS FUTUROS:

Se recomienda continuar con investigaciones sobre el comportamiento de la cascarilla en la masa panadera, evaluar empaques de alta barrera, caracterizar compuestos bioactivos, e implementar buenas prácticas de manufactura para garantizar la inocuidad y calidad del producto.

RESULTADOS:

- Se estandarizó proceso para transformar la cascarilla seca en un ingrediente alimentario inocuo y funcional, mediante tostado, molienda y tamizado.
- Los análisis microbiológicos mostraron ausencia de patógenos y micotoxinas.
- La composición química reveló un contenido de fibra dietética de 5,81 g/100 g, menor al reportado en literatura, pero con potencial nutritivo.
- ➤ Se formularon, se estandarizaron y se evaluaron un pan de molde con fibra y bebida de horchata en polvo.
- Los grupos focales indicaron buena aceptación sensorial e intención de compra de los dos productos.
- El estudio de mercado reveló márgenes de ganancia de 50-55 % para el pan y 22 % para la horchata.
- Se identificaron oportunidades comerciales especialmente para caficultores que deseen diversificar su producción.

CONCLUSIONES:

- Se concluye que el proceso artesanal de aprovechamiento de la cascarilla del café pergamino es técnica y comercialmente viable.
- La cascarilla procesada mantiene propiedades funcionales que permiten su incorporación en alimentos sin comprometer su aceptación sensorial.
- La cascarilla de café pergamino puede transformarse en un ingrediente rico en fibra para panes y bebidas tradicionales, con buena aceptación sensorial y un nicho de mercado local viable.

RECURSOS Y REFERENCIAS:

Barrera López, J.; Sánchez Velandia, P. (2020). Evaluación de la cascarilla de café como sustituto a las grasas utilizadas en la elaboración de brownies. Universidades de los Andes Colombia. https://repositorio.uniandes.edu.co/handle/1992/44612

Cinzia Borrelli, R.; Esposito F.; Napolitano, A.; Ritieni, A. y Fogliano, V. (2004) Caracterización de un nuevo ingrediente funcional potencial: la cascarilla plateada del café. Revista de química agrícola y alimentaria 52 (5), 1338-1343. 10.1021/jf034974x

Gottstein, V., Bernhardt, M., Dilger, E., Keller, J., Breitling-Utzmann, C. M., Schwarz, S., Kuballa, T., Lachenmeier, D. W. y Bunzel, M. (2021). Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods, 10(8), 1075. https://doi.org/10.3390/foods10081705